GCSE
 Mathematics (Linear)

Higher Tier Paper 1
Mark scheme

43651H
November 2015

Version 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

AQA

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.
If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

M	Method marks are awarded for a correct method which could lead to a correct answer.
A	Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.
B	Marks awarded independent of method.
ft	Follow through marks. Marks awarded for correct working following a mistake in an earlier step.
SC	Special case. Marks awarded for a common misinterpretation which has some mathematical worth.
M dep method mark dependent on a previous method mark being	
awarded.	

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a candidate has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the candidate. In cases where there is no doubt that the answer has come from incorrect working then the candidate should be penalised.

Questions which ask candidates to show working

Instructions on marking will be given but usually marks are not awarded to candidates who show no working.

Questions which do not ask candidates to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Candidates often copy values from a question incorrectly. If the examiner thinks that the candidate has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Paper 1 Higher Tier

\mathbf{Q}	Answer	Mark	Comments

$\mathbf{1}$	Additional Guidance 2		
	$145: 90: 45$	No working, not correct	M0
	$3+2+1=5$ $270 \div 5=54$ $162: 108: 54$	M1, A0 $270 \div 5=54$ $162: 108: 54$	M1ft

\mathbf{Q}	Answer	Mark	Comments

2	$4 x-1=14 x$ or $4 x-1=7 \times 2 x$ or $\frac{4 x}{7}-2 x=\frac{1}{7}$ or $\quad 2-\frac{1}{2 x}=7$	M1	Allow one error	
	$10 x=-1$ or $-\frac{10 x}{7}=\frac{1}{7}$ or $2 x=-\frac{1}{5}$	A1	oe	
	$-\frac{1}{10}$	A1ft	ft their equation error	at most 1
	Additional Guidance			
	$\frac{4 x}{7}-1=2 x,-\frac{10 x}{7}=1, x=-\frac{7}{10}$			M1, A0 A1ft
	$4 x-1=9 x,-5 x=1, \quad x=-\frac{1}{5}$			M0
	$4 x-1=2 x+7$			M0
	$\frac{4 x}{7}-1=2 x,-\frac{18 x}{7}=1, x=-\frac{7}{18}$			M1, A0, A1ft
	$\frac{4 x-1}{2 x}=7, \quad \frac{1}{2 x}-2=-7, \quad \frac{1}{2 x}=-9, x=-\frac{1}{18}$			$\begin{gathered} \text { M1, A0 } \\ \text { A0 } \end{gathered}$

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

5	A point that lies on the circumference, eg (4, 5), (10, 5), (7, 2), (7, 8)	B2	B1 (4, y) or $(10, y)$ or $(x, 2)$ or $(x, 8)$ B1 for 4 or 10 clearly shown as min or max horizontal value B1 for 2 or 8 clearly shown as min or max vertical value
	Additional Guidance		

$\mathbf{6 a}$	20 or 20 out of 120 or 20 in 120	B1	$\frac{20}{120}$ (oe) is B0

| Yes ticked | B1 | If boxes blank, yes may be implied by
 wording |
| :--- | :--- | :--- | :--- |
| Valid reason eg
 1 should be (about) 20 (but it is much
 lower)
 or 6 should be (about) 20 (but it is
 higher)
 or 6 is much higher than 1
 or frequencies should be all (about) the
 same | Q1 | oe Strand (i)
 Only award if Yes ticked or implied |
| | There are 4 ways to score the Q mark
 Comparing frequency of 1 to 20
 Comparing frequency of 6 to 20 | |
| Referring to significant difference between frequency of 1 and 6
 Referring to the fact that all frequencies should be the same | | |

Additional Guidance 2					B1
	Yes ticked and:	Q1			
6 has above the average which is 20	Q1				
6 more, 1 a lot less	Lands more on 6. It should land on each side about the same number	Q1			
The range of results is too large on specific numbers (1,6) showing there is something making it land on a 6 and not a 1	Q1				
The frequency of landing on 6 is over 7 times the frequency of it landing on 1.	Q1				
There is a large range of 33 between the highest and lowest frequency	Q1				
Because the frequency is not all the same so it isn`t fair	Q1				
Frequency should be the same for all numbers	Q1				
Lands more on 6	Q0				
6 has appeared as the mode number whereas 1 is the least amount	Q0				
Is heavier on number 6	Q0				
Landed on 6 38 times	Q0				
All number are about average except 1 and 6	Q0				
Answers should be more evenly spaced out	Q0				
Each time the number goes up, the frequency goes up	Q0				
Q Answer	Mark	Comments			
:---	:---:	:---:	:---:		

7	Additional Guidance 2			
	$\begin{aligned} & 2 x+2=36 \\ & 2 x=38 \\ & x=19 \\ & 36,56,70,96 \\ & 63 \end{aligned}$	Median correct but as last value evaluated wrongly, follow through mark is lost	$\begin{aligned} & \mathrm{MO} \\ & \mathrm{AO} \\ & \mathrm{AO} \\ & \mathrm{M1} \\ & \mathrm{AOft} \end{aligned}$	
	$\begin{aligned} & 2 x+2+3 x-1=36 \\ & 3 x=39 \\ & x=13 \\ & 28,38,46,67 \\ & 42 \end{aligned}$	Two errors in solving the equation	M1 A0 AOft M1 A1ft	
Q Answer	Mark	Comments		
:---	:---:	:---:	:---:	
8a	$4 x-8-6+10 x$	M1	Four terms. Three terms correct.	
:---:	:---:	:---:	:---:	:---:
	$4 x-8-6+10 x$	A1	Fully correct	
	$14 x-14$ or $14(x-1)$	A1ft	ft on M awarded and at most one error	
	Additional Guidance			
	$4 x-8-6-10 x,-6 x-14$			$\mathrm{M} 1, \mathrm{~A} 0$ A1ft
	$4 x-8-6-10 x,-6 x-2$			M1, A0 AOft
	$4 x-6-6-10 x$			M0
8b	$2 a(4 a+5 b)$	M1		
:---:	:---:	:---:	:---:	
	$3(4 a+5 b)$	M1		
	$\frac{2 a}{3}$	A1	Answer only full marks	
	Additional Guidance			
	Answer can come from wrong work, eg$\frac{8 a^{2}+10 a b}{12 a+15 b}=\frac{18 a}{27}=\frac{2 a}{3}$			
Q	Answer	Mark	Comments	
:---	:---:	:---:	:---:	
$\mathbf{9 a}$	Total 100 so median 50(th) value or $50.5($ th) value	M1	Check diagram for indication of 50 or cumulative totals	
:---:	:---	:---:	:---	
	M1	$18,42,74,94,100$		
	A1	oe accept $5.25-5.27$		
$\mathbf{9 b}$	20 in 6 to 7 bar so 6.8 is $\frac{4}{5}$ of $20=16$ or $\frac{1}{5}$ of $20=4$			
:---:	:---	:---	:---	
Q Answer	Mark	Comments		
:---	:---:	:---:	:---:	
$\mathbf{1 0 a}$	170	B1		
:---:	:---	:---:	:---	
	Angle at centre twice angle at circumference (or perimeter) (on same arc)	B1	Must mention centre and circumference	
$\mathbf{1 0 b}$	54	B1		
:---:	:---	:---:	:---	
	Opposite angles in cyclic quadrilateral (add up to 180)	B1	Must mention opposite and cyclic	
10c	$Z X Y$ stated or shown to be $90-63$ or 27	M1		
:---:	:---:	:---:	:---:	:---:
	27	A1	Answer only MOAO	
	Additional Guidance 1			
	Correct answer is common from wrong Any indication of wrong working or wr		rrect working must be s marked is M0	seen.
			Assumes $Z X$ bisects $W Z Y$ and intersection of chords is a right angle	M0
10c	Additional Guidance 2			
:---:	:---:	:---:	:---:	:---:
		$180-126=54$ $54 \div 2=27$	Assumes $Z X$ bisects $W Z Y$ and triangle $W Z Y$ is isosceles	M0
			Assumes $W Z Y$ is a right angle and ZWP is isosceles.	M0
Q Answer	Mark	Comments		
:---	:---:	:---:	:---:	
11	Alternative method 1			
:---:	:---:	:---:	:---:	
	$14 x+6<4 x-1$	M1		
	$10 x<-7$	A1	oe	
	$x<-0.7$	A1ft	ft on one rearrangement error Must have $x<$ Do not award if wrong inequality \leq, \geq or $>$ SC1 for $x<-0.4$ from $14 x+3<4 x-1$	
	Alternative method 2			
	$7 x+3<2 x-0.5$	M1		
	$5 x<-3.5$	A1		
	$x<-0.7$	A1ft	ft on one rearrangement error Must have $x<$ Do not award if wrong inequality \leq, \geq or $>$ SC1 for $x<-0.8$ from $7 x+3<2 x-1$	
11$\|c\|$ Additional Guidance 1 $14 x+6=4 x-1$ $10 x=-7$ $x=-0.7$ $x<-0.7$ $14 x+6<4 x-1$ $10 x<-7$ <-0.7 $14 x+3<4 x-1$ $10 x<-4$ $x<-0.4$	M0 until recovered then full marks			
:---:	:---	:---		
11	Additional Guidance 2			
:---:	:---:	:---:		
	$\left\{\begin{array}{l} 14 x+3<4 x-1 \\ 18 x<-4 \\ x<-\frac{2}{9} \end{array}\right.$	M0		
	$\left\{\begin{array}{l} 14 x+6<4 x-1 \\ 18 x<-7 \\ x<-\frac{7}{18} \end{array}\right.$	M1 AO A1ft		
	$\begin{aligned} & 7 x+3<2 x-1 \\ & 5 x<-4 \\ & x<-0.8 \end{aligned}$	SC1		
Q Answer	Mark	Comments		
:---:	:---:	:---:	:---:	
12a	$10^{2}-3^{2}$ or 91 or $100-9$ or $y^{2}+3^{2}=10^{2}$	M1	Accept any letter	
:---:	:---	:---:	:---	
	$\sqrt{91}$	A1	Ignore any attempt to evaluate SC1 $\sqrt{109}$	
12b		B1ft	ft their length y ignore any misuse of \tan, eg $\tan \left(\frac{3}{\sqrt{91}}\right)$ or $\tan ^{-1}\left(\frac{3}{\sqrt{91}}\right)$	
:---:	:---:	:---:	:---	
\mathbf{Q}	Answer	Mark	Comments	
:---	:---:	:---:	:---:	
13	n and $n+1$ seen	M1	Two consecutive integers expressed algebraically, eg $n-1$ and n	
:---:	:---	:---:	:---	
	$(n+1)^{2}-n^{2}$	M1dep	Subtraction of their consecutive integers squared	
	$n^{2}+2 n+1-n^{2}$	A1	Correct expansion	
	$2 n+1$ and explanation why this expression must be odd	Q1	Strand (i). Explanation why their expression must be odd	
$\mathbf{1 4 a}$	$2 \mathbf{b}-2 \mathbf{a}$ or $-2 \mathbf{a}+2 \mathbf{b}$ or 2(b-a) or 2(-a $+\mathbf{b})$	B1		
:---	:---	:---	:---	
14b	Alternative method 1			
:---:	:---:	:---:	:---:	
	$M A+A N$ or $\frac{1}{2} O A+\frac{1}{2} A B$ or $\mathbf{a}+\frac{1}{2}$ their $(2 \mathbf{b}-2 \mathbf{a})$	M1	oe	
	$\mathbf{a}+\mathbf{b}-\mathbf{a}$	A1		
	Alternative method 2			
	(M is midpoint of $O A$ and N is midpoint of $A B$) (hence) $M N=\frac{1}{2} O B$	M1		
	$M N=\frac{1}{2} \times 2 \mathrm{~b}$	A1	By midpoint theorem, triangle $A O B$ is an enlargement sf 2 of triangle $A M N$ is $\mathrm{M} 1, \mathrm{~A} 1$	
Q	Answer	Mark	Comments	
:---:	:---:	:---:	:---:	
14c	Alternative method 1			
	Common angle MAN or (Angle) $A M N=$ (Angle) $A O B$ because corresponding or (Angle) $A N M=$ (Angle) $A B O$ because corresponding	B1	Must be a specific angle shown to be common and if not MAN then reason ie corresponding must be stated Check diagram if reference to say, ' x is a common angle'	
	Sides in ratio 1:2	B1	oe eg scale factor 2	
	Alternative method 2			
	$\overrightarrow{O B}=2 \overrightarrow{M N} \text { and } \overrightarrow{O A}=2 \overrightarrow{O M}$	B2	Any two sides shown to be parallel vectors $\begin{aligned} & \text { oe eg } \overrightarrow{O B}=2 \mathbf{b}, \overrightarrow{M N}=\mathbf{b} \text { and } \overrightarrow{A B}=2 \mathbf{b}-2 \mathbf{a}, \\ & \overrightarrow{A N}=\mathbf{b}-\mathbf{a} \end{aligned}$	
15a	75	B1		
:---:	:---	:---:	:---	
15b	$8 x^{3} y^{9}$	B3	B2 for 2 terms correct B1 for one term correct SC1 for $2 x y^{3}$	

16a Graph of $y=x^{3}$
B1 Must be in 1st and 3rd quadrants.

$\mathbf{1 6 b}$	Graph of $y=x^{2}+3$	B1	3 need not be marked as long as graph is roughly symmetrical and crosses y-axis above origin
$\mathbf{1 6 c}$	Graph of $y=\frac{1}{x}$	B1	Must be in 1st and 3rd quadrants

Q	Answer	Mark	Comments

17	$y \alpha \frac{1}{x}$ or $y=\frac{k}{x}$	M1	oe $x y=k 2 \alpha \frac{1}{5}$ or $2=\frac{k}{5}$
	$k=10$	A1	oe $2=\frac{10}{5}$
	A1	oe	

18 a	2	B1	

18b	170	B1	

